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� Resistance Models

� Reliability Analysis Procedure

� Target Reliability

� Load and Resistance Factors



Natural and Man-Made Threats 

• Natural – hurricanes, floods, tornados, 
earthquakes

• Aging – degradation of materials

• Inadequate maintenance (corrosion, 
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• Inadequate maintenance (corrosion, 
cracking)

• Collisions – vehicles and vessels

• Acts o vandalism, intentional damage

• Terrorist attacks, explosions, fires



Consequences of Uncertainties

• Deterministic analysis and design is 
insufficient

• Probability of failure is never zero

• Design codes must include a 
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• Design codes must include a 
rational safety reserve

• Reliability is an efficient measure of 

the structural performance



Problem Statement
� New generation of design codes 

based on limit states (AASHTO LRFD) 
� Load and resistance are random 

variables
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variables

� Reliability index as a measure of 

performance

� How to determine load and resistance 

factors?
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Basic questions:
• How can we measure safety of a 

structure?

• How safe is safe enough? What is 
the target reliability?
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the target reliability?

• How to implement the optimum 

safety level?



Calibration Procedure
• Select representative structures

• Develop statistical models for loads

• Develop statistical models for resistance

• Develop/select reliability analysis procedure
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• Develop/select reliability analysis procedure

• Determine the target reliability index

• Determine load and resistance factors



Representative Structures

• Structural types (slab, I-beam, T-beam, 
box-beam, truss)

• Materials (non-composite and composite 
steel, reinforced concrete, prestressed 
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steel, reinforced concrete, prestressed 
concrete, wood)

• Span length (short, medium, long)



Load Models

• Dead load

• Live load (static and dynamic)

• Environmental loads (wind, snow, 
earthquake, temperature, ice)
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earthquake, temperature, ice)

• Special loads (vehicle and vessel collision, 
fire, explosion)



Bridge Live Load

• Strongly site-specific

• Traffic volume (ADTT)

• Multiple presence

• Extreme expected live load (75 year maximum)
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• Extreme expected live load (75 year maximum)

• Fatigue live load (magnitude and frequency)

• Service live load 





Statistical Data Base

• Load surveys, e.g. weigh-in-motion 
(WIM) truck measurement

• Load distribution (load effect per 
component)
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component)

• Simulations (e.g. Monte Carlo)

• Finite element analysis

• Boundary conditions (field tests)









Weigh-in-Motion System

Quartz strip
WIM system built in a 

highway pavement
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Weigh-in-Motion Data 

• Truck WIM data was obtained 
from the Federal Highway 
Administration and NCHRP 
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Administration and NCHRP 
Project 12-76

• Total number of records 
exceeds 70 million



Probability Paper

Data is plotted 
on the normal 
probability 
paper.  
A normal 
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paper.  
A normal 
distribution 
function is 
represented by 
a straight line.
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NCHRP Data - Florida
 

Florida

I-10 1,654,006 

I-75 2,679,288 

I-95 2,226,480 

State Route 647,965 

US29 728,544 
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Indiana 

9511 4,511,842 

9512 2,092,181 

9532 783,352 

9534 5,351,423 
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Mississippi 

I-10RI 2,548,678 

I-55RI 1,453,909 

I-55UI 1,328,555 

US49PA 1,172,254 
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NCHRP Data - New York
 

New York

0199 2,531,866 

0580 2,874,124 

2680 100,488 

8280 1,828,020 

8382 1,594,674 

9121 1,289,295 

9631 105,035 

Σ 7,791,636 
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Development of Numerical Procedure
• For each cross-section the maximum moment and shear 
was determined

• For each truck maximum value of live load effect was 

stored

Figure 1 - Bending Moment Envelopes - First 100 Trucks – 60ft Span



Florida – Load Effect – Moments
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Cumulative Distribution Functions of Ratio of Truck 
Moment/ HL93 Moment - Simple Span Moment – Florida 
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Indiana – Load Effect – Moments
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Cumulative Distribution Functions of Ratio of Truck 
Moment/ HL93 Moment - Simple Span Moment – Indiana 
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Mississippi – Load Effect – Moments
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Cumulative Distribution Functions of Ratio of Truck Moment/ 

HL93 Moment - Simple Span Moment – Mississippi 
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New York – Load Effect – Moments
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Cumulative Distribution Functions of Ratio of Truck Moment/ 
HL93 Moment - Simple Span Moment – New York 
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Configuration of the Heaviest  
Truck – New York 8382



New York Extremely Heavy Trucks 
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• Number of trucks: 2,474,407

- Additional filter:

- Mtruck/MHL93>1.35
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No Trucks Removed

0.22% Trucks Removed

� 5,455 trucks removed

� or 0.2%



New York Extremely Heavy Trucks 

• Number of trucks: 1,594,674

- Additional filter:

- M /M >1.35- Mtruck/MHL93>1.35

� 540 trucks removed

� or 0.03%



Extreme Value Analysis 

• The cumulative distribution function of Xn can be represented 

as:

n
mXFmnMF )()( =
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• and the probability density function fMn(m):

32
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n
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Graphical representation of CDF and PDF
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Moment  and Return Periods
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Two trucks side-by-side
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• Multiple-presence of trucks occupying three lanes

• One lane is almost exclusively occupied by trucks 

Video Recordings of Traffic Jam Situations FHWA Data



Dynamic Load

• Roughness of the road surface 
(pavement)

• Bridge as a dynamic system (natural 
frequency of vibration)
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frequency of vibration)

• Dynamic parameters of the vehicle 
(suspension system, shock absorbers)





Dynamic Load Factor (DLF)

• Static strain or deflection (at crawling 
speed)

• Maximum strain or deflection (normal 
speed)
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speed)

• Dynamic strain or deflection = 

maximum - static 

• DLF = dynamic / static



Code Specified Dynamic Load Factor

AASHTO Standard (2002)

AASHTO LRFD (2011)

3.0
12528.3

50 ≤
+

=
L

I
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AASHTO LRFD (2011)

0.33 of truck effect, no dynamic load 
for the uniform loading
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Dynamic Load - Conclusions 

• Dynamic strain and deflection do not 

depend on truck weight 

• Dynamic load factor (DLF) decreases for 
increased truck weight
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increased truck weight

• For a single truck DLF < 20%

• For two trucks side-by-side DLF < 10%



Parameters of Resistance

R = Rn M F P 

where :

R = nominal value of resistanceRn = nominal value of resistance

M = material factor

F = fabrication factor

P = professional factor



Parameters of Resistance

• The mean value of R is

• Coefficient of variation

µ µ µ µR n M F PR=

( ) ( ) ( )V V V V= + +
2 2 2
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• Bias factor

( ) ( ) ( )V V V VR M F P= + +
2 2 2

λ λ λ λR M F P=



• Compressive Strength of Ordinary Concrete, 

Ready mixed, fc’: 3,000   3,500   4,000   4,500   

5,000   and 6,000   psi

• Yield Stress of Reinforcing Steel Bars, Grade 60

Bar Sizes:   #3, #4, #5, #6, #7, #8, #9,

New Materials Data
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Bar Sizes:   #3, #4, #5, #6, #7, #8, #9,

#10, #11 and #14

• Breaking Stress of Prestressing Steel (7-wire 

strands), Grade 270, Nominal Diameters:   0.5 in 

and 0.6 in
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Summary of the Statistical Parameters for Concrete
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Statistical Parameters assumed for Monte Carlo Simulations
- Reinforcing Steel Bars, Grade 60
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Bar Size λ V

# 3 1.18 0.04

# 4 1.13 0.03

# 5 1.12 0.02

# 6 1.12 0.02

Reinforcing Steel Bars, Grade 60
– Statistical Parameters

# 6 1.12 0.02

# 7 1.14 0.03

# 8 1.13 0.025

# 9 1.14 0.02

#10 1.13 0.02

#11 1.13 0.02

#14 1.14 0.02
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Prestressing Steel – Statistical Parameters

Grade Size
Number

of samples
Bias Factor V

250 ksi

1/4 (6.25 mm)
3/8 (9.5 mm)
7/16(11 mm)

22
83
114

1.07
1.11
1.11

0.01
0.025
0.01

250 ksi
7/16(11 mm)
1/2 (12.5 mm)

114
66

1.11
1.12

0.01
0.02

270 ksi

3/8 (9.5 mm)
7/16 (11 mm)
1/2 (12.5 mm)
0.6 (15 mm)

54
16

33570
14028

1.04
1.07
1.04
1.02

0.02
0.02
0.015
0.015



Resistance Parameters

• Strength of material obtained from test data

• Load carrying capacity of components by Monte 
Carlo simulations

• Statistical parameters – mean value, bias factor 
(ratio of mean to nominal), coefficient of variation
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(ratio of mean to nominal), coefficient of variation



Composite Steel Girders
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Reliability Index, ββββ

Figure  5-8 PDFs of load, resistance, and safety margin.
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Reliability Index, β

For a linear limit state function, g = R – Q = 0, and 

R and Q both being normal random variables

( )QR µ−µ
=β

2

Q

2

R σ+σ
=β

µR = mean resistance

µQ = mean load

σR = standard deviation of resistance

σQ = standard deviation of load



Reliability index and probability of 
failure

PF β

1010--11 1.281.28

1010--22 2.332.33

1010--33 3.093.09

1010--44 3.713.71

1010--55 4.264.26

1010--66 4.754.75

1010--77 5.195.19

1010--88 5.625.62

1010--99 5.995.99



Reliability Analysis Procedures

• Closed-form equations – accurate results only for 
special cases

• First Order Reliability Methods (FORM), reliability 
index is calculated by iterations

• Second Order Reliability Methods (SORM), and 
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• Second Order Reliability Methods (SORM), and 
other advanced procedures

• Monte Carlo method - values of random variables 
are simulated (generated by computer), accuracy 
depends on the number of computer simulations



What is Optimum Reliability?

• If reliability index is too small – there 

are problems, even structural failures

• If reliability index is too large – the 

Department of Civil Engineering

• If reliability index is too large – the 
structures are too expensive



Target Reliability

• Consequences of failure

• Economic analysis

• Past practice
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• Past practice

• Human perception

• Social/political decisions



Recommended ββββT 

TIME 

PERIOD

PRIMARY COMPONENTS SECONDARY 

COMPONENTS
Single Path Multiple Path

5 years 3.50 3.00 2.25
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5 years 3.50 3.00 2.25

10 years 3.75 3.25 2.50

50 years 4.00 3.50 2.75



IMPORTANCE NEW  DESIGN EXISTING HISTORICAL

Low priority 3.0 – 3.5 2.0 -2.5 3.25 – 3.5

Recommended ββββT 
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Medium priority 3.5 – 4.0 2.5 – 3.0 3.5 – 4.5 

High priority 3.75 – 4.5 2.75 – 3.5 3.75 – 4.75



Load Factor

Department of Civil Engineering



Resistance Factor
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Conclusions

• Prior to calibration, there is a considerable spread of 

reliability indices.  After calibration, the reliability indices 

are close to the target value

• Limit state design or LRFD codes provide for a consistent 

reliability level
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• The format is flexible, and it can be used for new 

structural types, new materials

• Improved quality can be reflected in increased resistance 

factors and reduced load factors



Thank you
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